
4026 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 12, DECEMBER 2005

RF Propagation in Finite Thickness Unidirectional
Magnetic Photonic Crystals

Gokhan Mumcu, Student Member, IEEE, Kubilay Sertel, Member, IEEE, John L. Volakis, Fellow, IEEE,
Ilya Vitebskiy, and Alexander Figotin

Abstract—This paper presents an analysis of a new class of
magnetic photonic crystals (MPCs) constructed from periodic
arrangements of available (possibly anisotropic) homogeneous
material layers. Earlier, analytical studies of semi-infinite versions
of these crystals demonstrated that they exhibit the phenomena of
minimal reflection at their interface, large amplitude growth of the
harmonic wave within the crystal, and concurrent group velocity
slow-down. These characteristics are associated with the so called
frozen mode and occur at a specific frequency associated with a
stationary inflection point within the Bloch diagram. In this paper,
we present a characterization of these phenomena for a practical,
finite thickness crystal slab and propose a realizable combination
of materials consisting of available ferrite and dielectric media.
The existence of significant wave amplitude growth and slow down
are verified for materials with realistic losses. In addition, we
identify and characterize the bandwidth of the magnetic photonic
crystals and examine its relationship to the amplitude growth.

Index Terms—Brillouin zone, electromagnetic propagation,
frozen mode, periodic structure, photonic crystal, radiation.

I. INTRODUCTION

MATERIAL mixtures offer unique radio frequency (RF)
properties. For example, material properties such as

those found in ferrites [1], [2], loaded ferrites, and ferroelectrics
[3] have already been exploited in phase shifters [4], antenna
miniaturization, and beam control. For the latter case, several
recent studies have been published [5]–[7], where ferrite sub-
strates and superstrates were found attractive. There is also a
strong interest in the modification of materials (either by intro-
ducing periodic voids or by mixing several known materials)
to realize new properties as in the case of metamaterials. A
specific example is a periodic structure that exhibits forbidden
propagation bands (Yablonovitch [8]). Among other examples,
we can mention left handed materials [9], electromagnetic
bandgap structures [10], high impedance ground planes [11],
and artificial substrates for antenna arrays [12].

There is no doubt that material modifications offer unique
and highly sought advantages in RF applications [13]. Nev-
ertheless, defining the suitable material mixtures to satisfy
the given design criteria is an exceedingly difficult task. For
RF applications, we often seek phase shifter and antenna
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size reduction [14], greater focusing and sensitivity, radiation
control and impedance matching. Materials that can deliver
these desirable properties can make a significant impact in our
design capabilities. In this regard, composite metamaterials or
artificial magneto-electric media (where , and are
all coupled) possibly containing nano-composites, magneto-di-
electric textures, or photonic crystals either in periodic or
aperiodic form have been shown to exhibit unconventional new
properties [15], [16]. Therefore, they hold promise in designing
new devices with greater functionality. Recently, Figotin et
al. [16] demonstrated that magnetic photonic crystals (MPCs)
can display one-way transparency and wave slow-down. At
RF frequencies, such composites allow for the realization of
electromagnetic unidirectionality (a phenomenon which per-
mits propagation only in one of two opposite directions). An
important aspect of these MPCs is that they can be constructed
from readily available materials. Also, magnetic bias could
allow for tuning, thus, providing greater bandwidth realizations
[17]. The one way transparency and wave slow-down, coupled
with large field amplitudes was already presented in [17] for a
semi infinite slab (halfspace). Thus, the analysis in [17] did not
allow for an understanding of the MPC in a practical setting.
Toward this goal, here we consider the propagation of electro-
magnetic pulses through a finite MPC slab formed by a periodic
arrangement of ferromagnetic and anisotropic dielectric layers.

II. WAVE PROPAGATION IN FINITE LAYERED MEDIA

A. Characteristics of Magnetic Photonic Crystals

Electromagnetic wave propagation in multilayered
anisotropic media can be efficiently analyzed using the transfer
matrix formalism [18]. In this context, the field values at the
layer boundaries can be calculated through successive multipli-
cations of the specific layer transfer matrices. For example, let
us consider a one-dimensional (1D) periodic medium oriented
along the direction as shown in Fig. 1. Allowable propagation
bands for this structure can be determined by making use of
Bloch’s theorem together with the transfer matrix of the
unit cell (a periodic element of the crystal). In accordance with
Bloch’s theorem (an time convention is assumed and
suppressed), electromagnetic fields propagating along the
axis can be represented as a linear superposition of the Bloch
eigenmodes satisfying the periodic relation

(1)

where is the propagation constant and is the length of the
unit cell. Since the transfer matrix of a unit cell relates the field
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Fig. 1. Semi-infinite 1-D periodic medium.

at to the field at i.e., , the above equation
can be recast into

(2)

where is the identity matrix. We readily identify from (2)
that the eigenvalues of are and are therefore of unity
magnitude for real corresponding to propagating waves. Non-
unity eigenvalues are associated with evanescent waves and we
note that (2) leads to the same fields for and
( is an integer). Thus, it is convenient to restrict within the
range without loss of information. This re-
gion is referred to as the first Brillouin zone, and can be scaled
within the range of to by introducing the dimensionless
wavevector . Every value outside the first Brillouin
zone can, of course, be plotted within the range of to by
shifting it in multiples of .

Throughout the paper, will be referred to as the Bloch
wavenumber, and as usual the corresponding eigenvector will
define the polarization of the field for that wavenumber. Fig. 2(a)
is an example of the reduced zone representation of the Bloch
diagram for an anisotropic continuous medium in 0–20 GHz fre-
quency range. This representation is typically referred to as the
dispersion relation for the subject medium. In this medium, four
different Bloch modes may exist, two of them propagate along

direction and the other two along . Each of the modes
form a branch in the dispersion diagram and their corresponding
group velocities may be found by taking the derivatives of the
dispersion curve with respect to the wavenumber. For reciprocal
materials (symmetric - diagram), the and propagating
modes have the same group velocities. Fig. 2(b) shows the (re-
duced) Brillouin zone dispersion diagram for a reciprocal pe-
riodic medium where two anisotropic layers form the unit cell.
As seen, for this periodic crystal there are no propagating waves
within a certain frequency interval, referred to as the bandgap
region. A more interesting - relation is observed for the MPC
medium shown in Fig. 2(c) which is the focus of this paper. Of
importance is that within the MPC, the group velocities of the

and propagating waves are different from each other at
the same frequency. Clearly, this kind of behavior implies non-
reciprocal responses to incident radiation and is essential in re-
alizing the unidirectionality property of such crystals.

In the following, we examine the propagation characteristics
of a wave within a finite length MPCs made up of unit cells as

Fig. 2. Bloch dispersion relations of a periodic layered medium with primitive
cells consisting of (a) a single anisotropic layer, (b) two anisotropic layers, and
(c) two anisotropic and one magnetic layers.

Fig. 3. Finite magnetic photonic crystal.

shown in Fig. 3 (this is the simplest possible medium exhibiting
an asymmetric dispersion relation). The unit cell is composed
of two identical misaligned anisotropic dielectric layers (the
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Fig. 4. Band diagram of the infinite magnetic photonic crystal, � = 125; � =
40; � = 0; � = ��=12; L = 0:5695 mm for the A layers, � =

14:5; � = 1:6701; � = 0:4497; L = 0:3795L for the F layers.

layers) and a ferromagnetic layer (the layer). The magneti-
zation direction of the layers is also shown in Fig. 3. The
constitutive tensors for the layers are of the form

(3a)

(3b)

and likewise the layers have the material properties as

(4a)

(4b)

We note that the layers may also consist of gyroelectric
materials, but in the microwave range our interest is only in
gyromagnetic media as given above. Fig. 4 shows an example
band diagram for the infinite MPC medium. In this plot, of
particular interest is the inflection region. Moreover, with a
proper design of the physical dimensions of the unit cell the
inflection region can be tuned to have a “stationary” inflection
point associated with the conditions , and

. This region of the band diagram is referred to as
the frozen mode regime since (among other characteristics)
the group velocity approaches to zero at frequencies near
the stationary point. Hence, the RF pulse slows down and
its amplitude grows significantly (see Fig. 1 for illustration).
Below, we consider the analysis of a finite slab composed of
the nonreciprocal MPC unit cell with particular emphasis on
wave propagation near the frozen mode regime.

B. Analysis of 1D Magnetic Photonic Crystals

To carry out the analysis of a layered medium such as the one
in Fig. 3, we start by expressing the fields as a sum of four plane
wave modes: , and , where

and are the supported wavenumbers and denotes the
th electromagnetic eigenmode in free space. Specifically, we

Fig. 5. Stack of multiple cells grouped to overcome matrix instabilities in slabs
with many unit cells.

represent the incident, reflected, and transmitted waves at the
boundaries of the MPC as

(5a)

(5b)

and

(5c)

in which are the mode coefficients of the incident
field and are the unknown coefficients for
the reflected and transmitted modes. We proceed to determine
these coefficients by introducing the unit cell transfer matrix ,
such that

(6)

in which refers to the total number of unit cells. To obtain the
intermediate field distribution along the crystal, we can succes-
sively multiply the field at the beginning of the structure with
the unit cell transfer matrix .

Although the above procedure is simple, numerical insta-
bilities appear when the MPC slab consists of many periodic
layers. This is especially true when the excitation is close
to the bandgap frequencies. We can overcome this difficulty
by dividing the crystal into smaller multicell stacks and by
subsequently applying the transfer matrix analysis to each of
these stacks separately. Recombination of all equations into
a single matrix system results in a numerically stable and
efficient scheme for large . As an example, let us consider the
three section region shown in Fig. 5. For this specific case, we
express the intermediate field values in terms of the plane wave
modes within the layer (assuming all subdivisions end with
the last layer, and begin with the first layer of the unit cell). The

layer modes can be represented as a combination of the plane
wave modes , and
( and being the supported wavenumbers). The unknown
coefficients and for the th mode in the th interval can
then be related to , and by solving the system

(7a)
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(7b)

(7c)

for the positive and negative propagating modes respec-
tively, where ’s are again used to represent the free
space plane wave modes. We remark that the coefficients

, and are the same as those defined
in (6). Knowledge of all unknown coefficients also yields the
fields at the interfaces of the multicell stacks. Within each stack,
the fields can be found by successive multiplications with
the field values at the incidence boundary of the stack. Thus,
errors due to successive multiplications are confined within
each individual multicell stack and instabilities are avoided.
Once the field distributions for multiple frequencies have been
determined, fields in time domain can be generated via Fourier
transform. Using this method, we next proceed to investigate
the propagation characteristics of a narrow band RF Gaussian
pulse inside the magnetic crystal. As noted above, of particular
interest is the case when the pulse is modulated around the
frozen mode frequency .

III. PROPAGATION IN LOSSLESS MAGNETIC PHOTONIC

CRYSTALS

In [16], Bloch wave analysis was used to demonstrate the
strong bulk asymmetry in the frequency spectrum of ideal loss-
less MPCs, having sufficient Faraday rotation in the layers
and appropriate misalignment of the layers. Further, in [17]
the existence of a stationary inflection point associated with the
conditions was shown. At this
stationary inflection point, the Bloch modes of the MPC degen-
erate into general divergent Floquet modes. Concurrently they
are associated with vanishing group velocity and therefore re-
ferred to as frozen modes. Nevertheless, [16] and [17] assumed
semi-infinite crystal media, but for practical applications it is
of interest to consider finite thickness crystal slabs. In this sec-
tion, we examine propagation within the frozen mode regime
(frequency band near the occurrence of the frozen mode fre-
quency) for the case of a finite slab. Specifically, we will present
results to demonstrate the coupling, amplitude growth, propa-
gation speed, and field distribution of these frozen modes for a
lossless MPC slab.

The layer constitutive tensors in (3a) and (3b) represent
anisotropic dielectric materials which are aligned with an angle

about their primary axis. Among the naturally available
anisotropic crystals, we will consider “rutile” (a uniaxial crystal)
for the layers. Rutile (TiO ) has a dielectric constant of

and [see (3a)] with corresponding loss tangents of
and , respec-

tively. On the other hand, the layer tensors in (4a) and (4b)
describe gyromagnetic materials having a primary axis along

. The imaginary off-diagonal entries describe the well known
Faraday rotation effect with the ratio . This ratio and the
total length of the layer determines the amount of Faraday rota-

tion the wave would acquire upon crossing the layer. Properly
magnetized soft ferrites, such as yttrium iron garnet (YIG), can
be used to construct the layers.

The permeability tensors of ferrites can be well approximated
by the Lorentz curves as (see [19])

(8a)

where

with being the magnetic resonance frequency, is the gy-
romagnetic ratio obtained from the experimental factor
is the linewidth of the Lorentz curve, and is the parameter
associated with dissipation within the crystal. Also, is the
usual saturation magnetization parameter of the ferrite and
is the static magnetic bias field. It is important to note that
must be large enough to put the ferrite into saturation. For the
layers, we will consider a narrow linewidth ferrite. More specif-
ically, calcium vanadium garnet (CVG) with

will be assumed to form the layers. Also,
for our analysis a narrowband pulse will be considered. Since we
operate away from the ferromagnetic resonance region (to keep
losses at a minimum) and the pulse is narrow band, the perme-
ability tensor can be assumed constant over the analysis band.
This allows for a constant loss tangent as well. Specifically, at
10 GHz, with kOe, we note that the layer perme-
ability parameters to be used are with
the loss tangents given by .
Also, the dielectric constant of CVG is with

.
To consider wave propagation within the MPC, we start our

analysis by first assuming no losses within the crystal (losses
will be considered in the subsequent section). Specifically, we
set the layer (rutile) material parameters to
with , and . For the CVG layers the
material parameters are set as above ( ,
and ). Furthermore, the thickness of the layer is
scaled relative to that of the layer. That is, a thickness of

implies that the layer is half as thick as the layer. For
our examples, the layer thicknesses were set to 0.5695 mm.
Before proceeding further, we should stress that although the
individual layers of the MPC are assumed to be nondispersive,
the assembled MPC exhibits strong dispersive characteristics as
will be discussed next.

Fig. 6 provides a closer view of the band diagram for var-
ious layer thicknesses near the frozen mode frequency. Of
particular interest is the bending of the curves at the inflection
region as the thickness of the layer is varied. For the case
of , although the curve does indeed have an inflection
point , we note that it is not stationary. However, by
adjusting the aspect ratio of the layers, the slope of the curve can
be made to approach zero, . Specifically, the case of
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Fig. 6. Band diagram for different ferrite layer thicknesses.

leads to a curve that nearly exhibits the stationary
inflection point at . As seen, a slight variation in the
thickness of the layer leads to lower slopes at the inflection
region. Of course, the slope is associated with the wave velocity
and the location where this velocity vanishes defines the sta-
tionary inflection point that the frozen mode frequency occurs.
It is important that we operate within the minimal dispersion
region (almost linear segment) of the - curve near the frozen
mode point to avoid dispersion. Hence, to a great degree, the ex-
tent of the linear segment around the frozen mode frequency (to
be referred to as the frozen mode regime) defines the bandwidth
of the crystal if we chose to retain the same biasing magnetic
field. As an example, for the linear segment occurs
approximately within the region of the

- curve. Outside this frozen mode regime propagation within
the crystal is highly dispersive.

Let us now consider the propagation of a Gaussian pulse in
a slab consisting of a periodic arrangement of the crystal layers

corresponding to (dashed curve in
Fig. 6). Fig. 7(a) is a time snapshot of the incident electric field
that is linearly polarized in . We note, however, that due to the
anisotropic nature of the layers and gyromagnetic nature of
the layers, the wave inside the MPC has a general elliptical
polarization. The -component of the electric field inside the
MPC is shown in Fig. 7(b) at s. Throughout the paper,
the time origin corresponds to the instant when the in-
cident pulse peak is meters away from the MPC boundary
(for the above case m). Of particular importance is
that the pulse shape is retained (very low dispersion) implying
that the information content potentially carried by the pulse is
also retained. As expected, the pulse shrinks significantly and
is enlarged in amplitude (due to the intrinsic multiple reflec-
tions within the crystal). More specifically, the amplitude of the
interior field increases by a factor of 5.7 for this case and the
pulse width shrinks by a factor of nearly 3000 (original spa-
tial width of is reduced to ). Table I summa-
rizes the corresponding values as well as the spatial variances
of the incident Gaussian pulses for different layer thick-
nesses. The envelope of the Gaussian pulse is thus expressed as

. We note here that, since the minimum dispersion
bandwidth (BW) of the MPC varies with the layer thickness,
the spatial extent of the incident pulse, , must also be adjusted

Fig. 7. (a) Input pulse in free space and (b) E distribution in crystal when
t = 38:938 �s, F = 0:3795; D = 7500m,N = 2000 (see Table I).

TABLE I
PROPAGATION CHARACTERISTICS OF MAGNETIC PHOTONIC CRYSTALS

accordingly. This leads to different values to ensure that at
is far enough so that most of the incident pulse is out-

side of the MPC.
Fig. 8(a)–(c) gives a more expanded and detailed history of

the incident pulse coupling and propagating inside the MPC by
considering the initial part of the MPC in Fig. 7(b).
Specifically, Fig. 8(a) shows the pulse at s whereas
Fig. 8(b) and (c) gives the pulse shape at s and s,
respectively. Here, we are particularly interested in observing
how quickly the pulse reaches its maximum field strength once
inside the crystal. In this example, the pulse reaches its max-
imum amplitude within ( cm). As shown in Fig. 9, by
adjusting the thickness of the ferrite layer to be (im-
plying a flatter slope around the inflection point) the pulse can
reach a maximum amplitude of 14 within (higher ampli-
tude and longer propagation). That is, as the frequency of oper-
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Fig. 8. (a)–(c) Snapshots of the E field at t = 13:936 �s, t = 19:059 �s,
and t = 25:51�s in caseF = 0:3795; D = 7500m,N = 2000 (see Table I).

ation and the slope of the - curve gets closer to the stationary
inflection point, the amplitude grows remarkably.

Achieving a maximum amplitude within a small distance
once inside the crystal is critically important since it translates
to smaller slab thicknesses, an important factor for practical
realizations. Table I summarizes the characteristics of the prop-
agating pulse for different ferrite layer thicknesses when the
incident electric field is an -polarized Gaussian pulse of unity
magnitude. To generate the table, we chose (number
of unit cells) for the cases of and .
However, the number of unit cells was increased to
for and to for . This
ensured that the entire transmitted pulse would fit within the
crystal width (the bandwidth in Table I is changing for different

layers to accommodate the minimal dispersion region). As
already noted, the maximum amplitude increases significantly

Fig. 9. E at t = 172:52 �s in case F = 0:3782;D = 48000 m, N =

2500 (see Table I).

when the thickness of the layer is adjusted for a flatter -
curve. However, we note here that decreasing the layer
thickness further will cause the - curve to bend inward,
causing the frozen mode regime to disappear. Concurrently, the
allowable bandwidth for dispersion–free propagation decreases
(the minimal dispersion region narrows as shown in Fig. 6). The
slab thickness needed to achieve the maximum pulse amplitude
also increases as the - curve is made flatter.

The remarkable and unique property of the proposed MPC
can also be seen from the last two columns in Table I, where
the interior pulse amplitude increases by a factor of 14 and the
speed is reduced to th of the original propagation ve-
locity. Even for the case when , the propagation speed
of the pulse decreases to th of that in free space. Such
slow-down in speed is expected to allow for RF device minia-
turization when such crystals can be used as the host medium.
Correspondingly, to achieve such a slow speed using uniform
and homogenous media, the relative permittivity must be as
high as 176 400. Even if such a high dielectric constant struc-
ture is available, reflections and mismatches at the air-dielectric
interfaces would prevent EM coupling into the material. On the
contrary, the most unique aspect of the MPC is that it concur-
rently exhibits negligible backward reflection when operating in
the minimal dispersion region near the frozen mode frequency
[17]. The transmittance of the MPC calculated from the Bloch
analysis for the semi-infinite case is shown in Fig. 10 for dif-
ferent layer thicknesses and for an -polarized incident field.
As seen, the highest transmittance occurs at the frozen mode
frequency and it is more than 70% (up to 85%) for all cases.
Moreover, the transmittance improves as the - curve is made
flatter near the frozen mode frequency as the layer thickness
is varied.

Slow-down and amplitude growth within the MPC are con-
sequences of multiple reflections that occur at the frozen mode
regime. The snapshots of the instantaneous power density

shown in Fig. 11(a) for the case clearly
depicts the effect of reflections. We observe that the power
density has large positive and negative values ( directed
instantaneous power density) with respect to the peak of the
incident instantaneous power . The pulse is basically
squeezed within the MPC and its time harmonic components
reflect back and forth causing a small net positive group
velocity with large field amplitudes. The average power calcu-
lated by integrating the instantaneous power over a finite spatial
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Fig. 10. Transmittance of the MPC for different F thicknesses.

window is a smooth Gaussian curve as shown in Fig. 11(b).
As expected, the maximum of the average power matches the
transmitted power ( % of the average incident power for
this example). Further, we remark that once the spatial extent of
the transmitted pulse is scaled by the pulse propagation speed
( in this case), we simply recover the incident power
curve in Fig. 11(c).

IV. MATERIAL LOSS EFFECTS ON PROPAGATION

In the previous section, we considered an ideal lossless MPC
structure. We demonstrated that the Bloch spectrum is nonre-
ciprocal and can have a stationary inflection point (frozen mode
frequency). We also presented the propagation characteristics of
the MPC medium when excited at or near the frozen mode fre-
quency. Nevertheless, the above study did not account for losses
usually found in realistic materials. Therefore, it is equally im-
portant to examine the effects of material loss on the frozen
mode phenomenon. Thus, in this section we focus on the same
MPC structure but with losses incorporated within the crystals.

Table II presents the propagation properties for a realistic
MPC having a loss tangent of the order (as given
in Section III) and for an ultra low loss MPC with .
As before, the MPC is illuminated with the same incident field
used to generate Table I. As seen from Table II, a significant in-
crease in amplitude at the frozen mode regime is again observed.
However, the amplitude is reduced by more than 50% even for
the case of . This higher loss is likely due to the
multiple reflections within the crystals, viz. the same behavior
that results in pulse compression. Nevertheless, it is important
to note the amount of total loss is also strongly dependent on the
slope of the - curve. This implies that a trade-off between loss
and the maximum (peak) amplitude can be achieved within the
crystal. In this vein, we remark that decreasing the loss tangent
from down to results in nearly doubling the peak am-
plitude from 2.6 up to 5.7. Accordingly, it is crucial to choose
low loss materials for the design of MPC and to concurrently
adjust the stationary inflection point to achieve maximum am-
plitude for the given loss tangent of the material.

To further illustrate the loss in the MPC and its dependence
on the slope at the inflection region, we proceed by considering
a time harmonic field excitation. We specifically concentrate on

Fig. 11. (a) Instantaneous power density ẑ �(�E� �H) snapshot in the MPC. (b)
Average power in the MPC for F = 0:3795. (c) Average power of the incident
field in time domain observed at the leftmost boundary of the MPC.

the envelope of the electric field within the MPC for two dif-
ferent loss tangents. For this case, we choose a large number
of unit cells to emulate a semi-infinite medium.
Fig. 12(a)–(d) present the envelope of the electric field as a
function of position within the MPC for various layer thick-
nesses. We clearly observe that the envelopes attenuate faster
as the - curve is made flatter by adjusting the layer thick-
ness. This is likely due to the higher pulse compression implying
that more bounces occur within the crystal prior to reaching a
steady-state condition. We note that a nonmonotonic decay as
shown in Fig. 12(c) and (d) is associated with the field com-
ponent. When the power density is actually plotted the corre-
sponding curve is monotonic.
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TABLE II
EFFECT OF LOSS ON PROPAGATION CHARACTERISTICS

Fig. 12. Envelope of E in the MPC at the carrier frequency (a) F = 0:39,
(b) F = 0:385, (c) F = 0:3795, and (d) F = 0:3782.

V. CONCLUDING REMARKS

We presented a study of the electromagnetic wave propaga-
tion characteristics within a class of MPCs constructed from
a periodic arrangement of available homogeneous material
layers. These crystals are unidirectional and have the unique
property of exhibiting concurrent low reflectivity and dramatic
wave slow-down coupled with a large wave amplitude increase
once within the MPC. That is, they exhibit very large effective
dielectric constant, but can still display low reflectance for an
externally impinging pulse. These concurrent phenomena occur
at and near a specific frequency referred to as the frozen mode,
and can be potentially exploited for improved antenna matching
and miniaturization.

Our study focused on practical/realizable finite dielectric slab
configurations and on the existence and characteristics of the
aforementioned phenomena when the crystals are comprised of
available materials. We observed that once inside the MPC, the
spatial width of an incident harmonic Gaussian pulse decreases
whereas its field amplitude increases remarkably. Specifically,
very slow group velocities on the order of , where is
the speed of light, are possible within the MPC with a concur-
rent transmittance of greater than 70%. However, to retain large
wave amplitudes with minimal dispersion, one must operate
within a small bandwidth around the frozen mode frequency.

The spatial location where the pulse reaches its maximum am-
plitude is also strongly dependent on the slope of the - curve.
Of course, the periodic slab forming the MPC must have a min-
imum thickness to realize the possible maximum wave ampli-
tude. We should remark that magnetic biasing can be used to
increase the realizable bandwidth based on the properties of the
ferrite layer used to form the crystal.

We considered, both ideal (lossless) as well as material layers
exhibiting practical losses. The interesting MPC phenomena are
indeed present and realized when the crystals have finite loss
tangents. However, the wave amplitude increase is reduced in a
manner controlled by the slope of the - diagram at the frozen
mode frequency. Thus, given the specific materials comprising
the MPC, a compromise between amplitude growth and band-
width (without biasing) is needed to achieve the best utilization
of the crystal for a specific application. Specifically, for the low
loss materials discussed throughout the paper,
the amplitude of can be increased by 20% but concurrently
the bandwidth is reduced by as much as 70% (see Table II). That
is, a small amplitude increase can imply a large bandwidth com-
promise. Of course, there are many parameters that play a role
in the amplitude versus bandwidth choices. Among them are
the anisotropy ratios and dielectric constants, loss tangents, mis-
alignment angles among layers, biasing and ferrite layer char-
acteristics. The practical compromise among these choices is
under investigation.
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